
Oracle University | Contact Us: +38 61 5888 820

Java EE 6: Develop Database Applications with JPA

Duration: 4 Days

What you will learn

This Java EE 6: Develop Database Applications with JPA NEW training explores using the Java Persistence API within

the context of a web-based Java Enterprise Edition application, as well as within a stand-alone Java Standard Edition

application. This includes using Java Persistence API with the Enterprise JavaBeans technology.

Learn To:

Update multiple database tables based on relationships.

Perform CRUD operations with JPA in Java SE and EE environments.

Perform data validation using Bean Validation.

Optimize JPA for performance.

Apply transactions and locking.

Map relational database tables to Java using ORM techniques and JPA.

Understand key concepts found in the Java Persistence API.

Create robust entity models.

Create static and dynamic queries using Java Persistence API Query Language.

Create type-safe queries with the Java Persistence API Criteria API.

Benefits to You

Learn how to accelerate the development of applications that use relational databases by mapping tables and table

relationships to Java objects using Java Persistence API. You will also see how JPA solves issues with traditional

relational database applications, including SQL injection.

JPA Enhancements

JPA has been enhanced and simplified in Java EE 6. The Java Persistence API (JPA) version 2.0 specification

facilitates more effective and reliable (that is, more strongly typed) methodology for building object-centric criteria-based

dynamic database queries.

JPA was introduced in Java EE 5, and provides a POJO-based persistence model for Java EE and Java SE

applications.

Relational Data Mapping

Persistence is the technique through which object models broker the access and manipulation of information from a

relational database. JPA handles the details of how relational data is mapped to Java objects, and it standardizes

Object/Relational mapping.

Copyright © 2013, Oracle. All rights reserved. Page 1

http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=3
http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=3
http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=225

Audience
Database Designers
J2EE Developer
Java Developer
Java EE Developer

Related Training

Required Prerequisites

Experience with Java EE 6 platform recommended

Experience with Java programming

Experience with Relational Databases recommended

Java SE 7 Programming

Developing Applications with Java EE 6 on WebLogic Server 12c

Suggested Prerequisites
Experience building and deploying EE applications

Experience with NetBeans recommended

Oracle WebLogic Server 12c Basic Administration Tasks OBEs

Course Objectives
Map relational database tables to Java using ORM techniques and JPA

Perform CRUD operations with JPA in Java SE and EE environments

Update multiple database tables based on relationships

Perform data validation using Bean Validation

Apply transactions and locking

Optimize JPA for performance

Course Topics

Course Introduction
Describing the target audience for this course
Explaining the course itinerary
Describing the format that the class will use
Introducing the course environment
Describing the need for Object-Relational Mapping

Copyright © 2013, Oracle. All rights reserved. Page 2

Introduction to Java Persistence API
Describing the Java Persistence API
Creating entity classes
Using persistent field and properties
Using a generated primary key (table, sequence and identity)
Obtaining an Entity Manager
Creating a Persistence Unit
Using an entity manager to create, find, update, and delete entities
Creating typed queries in JPA

Working with JPA in a Java Enterprise Environment
Evaluating the role of the container with JPA
Accessing JPA entities from a servlet
Evaluating the application of JSF as a user interface framework
Accessing JPA entities from Enterprise JavaBeans
Determining the impact of using stateless, stateful, and singleton session beans on entities
Configuring a persistence context in an EE context

Introduction to the Auction Application Case Sudy
Describing the auction application
Defining the domain objects of the auction application
Describing the implementation model for the auction system

Modeling Relational Databases with JPA Entities
Examining relationships in the data and object models
Using relationship properties to define associations
Implementing one-to-one unidirectional and bidirectional associations
Implementing many-to-one/one-to-many bidirectional associations
Implmenting many-to-many unidirectional and bidirectional associations
Using OrderBy and OrderColumn annotations to define sort order
Applying the OrphanRemoval annotation to prevent orphaned entities

Working with the Entity Manager
Describing the relationship between an entity and an entity manager, and between a persistence context and a persistence unit
Differentiating between transaction-scoped and extended entity managers
Describing the entity life cycle
Using entity manager operations to perform CRUD operations: persist, find, merge, remove
Examining the role of the entity manager with detached entities
Defining and use cascading operations

Persisting Enums and Collections
Persisting entities that contain enums
Persisting entities that contain collections
Persisting entities that contain Maps

Creating Queries with the Java Persistence Query Language (JPQL)
Describing the Java Persistence Query Language (JPQL)
Contrasting JPQL with native queries
Using conditionals to filter results
Refining queries to return only needed data
Performing joins between entities
Creating dynamic queries with parameters

Copyright © 2013, Oracle. All rights reserved. Page 3

Using named queries
Performing bulk updates and deletes

Using the Critieria API
Contrasting the Critiera API with JPQL
Using the Critieria API structure and core interfaces
Creating SELECT, FROM, and WHERE clauses
Creating paths and expressions
Using ORDER BY, GROUP BY, and HAVING clauses
Using the canonical metamodel

Implementing Bean Validation with JPA
Describing the JPA lifecycle phases where validation takes place
Creating an entity listener class
Utilizing validation groups
Using built-in validation constraint annotations provided by Bean Validation
Creating a custom Bean Validation constraint

Applying Locking and Transactions
Describing transaction semantics
Comparing programmatic and declarative transaction scoping
Using JTA to scope transactions programmatically
Implementing a container-managed transaction policy
Supporting optimistic locking with the versioning of entity components
Supporting pessimistic locking by using EntityManager APIs
Describing the effect of exceptions on transaction state

Advanced Modeling: Entity Inheritance Relationships
Evaluating object-relational mapping strategies for entity inheritance
Applying single-table-per-class, joined-subclass, and table-per-class inheritance mapping strategies
Using embeddable classes
Overriding mappings with the @AttributeOverride and @AssociationOverride annotations
Specifying composite primary keys

Optimizing JPA Performance
Using lazy fetching to prevent the loading of entities that are not being used
Using pagination to control the amount data that is needed at any one time
Modifying queries to prevent the N + 1 problem
Creating read-only queries
Describing performance issues associated with IDENTITY ID generation
Creating and using stored procedures with JPA and EclipseLink
Using cache optimizations with JPA and EclipseLink

Copyright © 2013, Oracle. All rights reserved. Page 4

